Greta Goshorn

March 2019- Assessment of Warty Sea Cucumber Abundance at Anacapa Island

Assessment of Warty Sea Cucumber Abundance at Anacapa Island

March 2019- Assessment of Warty Sea Cucumber Abundance at Anacapa Island 1

Final Report to:

Resources Legacy Fund Foundation

Grant #13319

March, 2019

Andrew Lauermann, Heidi Lovig, Greta Goshorn

March 2019- Assessment of Warty Sea Cucumber Abundance at Anacapa Island 2

Marine Applied Research and Exploration
320 2nd Street, Suite 1C, Eureka, CA 95501 (707) 269-0800
www.maregroup.org

TABLE OF CONTENTS
LIST OF FIGURES………………………………………………………………………………………………………………………..2
LIST OF TABLES …………………………………………………………………………………………………………………………3
INTRODUCTION………………………………………………………………………………………………………………………….4
BACKGROUND ……………………………………………………………………………………………………………………………4
PURPOSE…………………………………………………………………………………………………………………………………….5
OBJECTIVES ……………………………………………………………………………………………………………………………….5
SURVEY METHODS ……………………………………………………………………………………………………………………..6
ROV EQUIPMENT AND SAMPLING OPERATIONS ………………………………………………………………………..7
SUBSTRATE AND HABITAT ANNOTATION……………………………………………………………………………………8
INVERTEBRATE ENUMERATION………………………………………………………………………………………………….9
ROV POSITIONAL DATA ……………………………………………………………………………………………………………….9
RESULTS……………………………………………………………………………………………………………………………………..10
SURVEY TOTALS………………………………………………………………………………………………………………………….10
SUBSTRATE AND HABITAT………………………………………………………………………………………………………….11
INVERTEBRATE TOTALS……………………………………………………………………………………………………………..12
WARTY SEA CUCUMBERS…………………………………………………………………………………………………………….13
DISCUSSION…………………………………………………………………………………………………………………………………15
PROJECT DELIVERABLES ……………………………………………………………………………………………………………15
REFERENCES ………………………………………………………………………………………………………………………………16

LIST OF FIGURES

Figure 1. Planned transect lines placed parallel to depth contours at Anacapa Island SMR
and East Fish Camp…………………………………………………………………………………………………………6

Figure 2. Basic ROV strip transect methodology used to collect video data along the sea floor,
showing overlapping base substrate layers produced during video processing and habitat
types (hard, mixed soft) derived from the overlapping substrates…………………………………….8

Figure 3. Density of WSCs per 100m2 in each habitat type for the spring and fall at Anacapa
Island SMR and East Fish Camp. Densities represent the total number of WCSs observed per
100m2 of each habitat type……………………………………………………………………………………………..13

Figure 4. The mean density of WSC (per m2) summarized from 10 meter transect segments
across all habitats by 5 meter depth bin for each season at Anacapa Island SMR and East
Fish Camp. Error bars represent one standard error…………………………………………………………………..14

LIST OF TABLES

Table 1. Survey totals for Anacapa Island SMR and East Fish Camp, including hours of video,
total distance surveyed (kilometers), swept area of transects (hectares), and average,
minimum and maximum depth (meters) by season…………………………………………………………10

Table 2. Percentages of substrates and habitats by season at Anacapa Island SMR and East
Fish Camp. …………………………………………………………………………………………………………………….11

Table 3. Common and taxonomic (species) names of quantified invertebrates for the spring
and fall combined………………………………………………………………………………………………………….12

Table 4. The average, minimum and maximum depth, and the number of warty sea
cucumbers observed at Anacapa SMR and East Fish Camp during the spring and fall. ………13

INTRODUCTION

BACKGROUND

Warty sea cucumbers (WSC), Apostichopus parvimensis, are an important component of the
subtidal zone, feeding on benthic waste and recycling nutrients. WSCs are found in and
adjacent to rocky outcroppings from the shallow intertidal to approximately 60 m deep from
Monterey, California to Bahia Tortugas, Mexico. Within their range in Southern California
and Mexico, dive fisheries catch WSCs for export to Asian markets. Similar to other sea
cucumber fisheries around the world, demand for WSCs seems to be consistently increasing,
while the resource is becoming less abundant. This trend is also evident in California, where
landings data gathered by the California Department of Fish and Wildlife (CDFW) show that
the fishery has declined in both overall catch and catch per unit of effort (CPUE) in recent
years (State of California Fish and Game Commission, 2017).

CDFW scientists have performed SCUBA surveys since 2013 in an effort to increase their
understanding of basic life history information of the species. Results from the surveys have
indicated that WSCs form spawning aggregations each year in the spring and summer. This
coincides with a peak in the number of cucumbers harvested in commercial dive landings,
with approximately 75% of landings occurring during spring and early summer periods.
Based on these findings, the Fish and Game Commission recently adopted a seasonal closure
to protect spawning aggregations of WSCs each year from March 1-June 14.

While seasonal abundance levels have been well documented at SCUBA depths (less than 30
meters), anecdotal reports from commercial fishery participants have suggested that WSCs
display a seasonal migration from deep to shallower water for spawning. However, to what
degree they utilize deeper waters when they are not found in shallow areas or what
proportion of the population moves to shallow areas during spawning remains unknown.
Because of this, CDFW biologists are interested in gathering more data on WSC distribution
and seasonality of abundance to determine the role that deeper, unstudied areas (greater
than 30 meters) play in supporting their populations. This data may be critical, as the
increasingly high demand for WSCs coupled with the lack of information about them makes
them vulnerable to overexploitation.

The Southern California WSC dive fishery occurs near Anacapa Island State Marine Reserve
(Anacapa Island SMR). A differential in WSC densities inside and outside of this Marine
Protected Area (MPA) has been documented by previous dive studies, where WSC were
shown to be much less abundant outside of the MPA than inside (Schroeter et al., 2001,
California Department of Fish and Game, 2007, State of California Fish and Game
Commission, 2017). To better understand seasonal abundance and depth distribution inside
and outside of MPAs and to examine seasonality of abundance deeper than SCUBA depths,
Marine Applied Research and Exploration (MARE) and CDFW conducted a 2-phase
assessment around Anacapa Island in 2018.Sampling was completed using MARE’s remotely
operated vehicle, ROV Beagle. Two study sites were selected, one inside the protection of
Anacapa Island SMR and one outside of the reserve that was subject to fishing. Both sites are
adjacent to CDFW and National Park Service monitoring stations. Each site was sampled
during the spring (phase 1), and fall (phase 2) to survey both WSC spawning and non-
spawning seasons.

PURPOSE

The purpose of this study was to provide CDFW with critical information that will be used to
inform the management of the WSC dive fishery and to further understand the performance
of an MPA in relation to the fishery. Specifically, we ask whether there is evidence of a
seasonal shift in abundance between shallow well studied areas and deeper areas out to the
observed maximum depth range of the species in the study area. In addition, these data will
inform future study design by providing information related to the extent of sampling
needed to accurately characterize WSC populations in both MPAs and fished areas.

OBJECTIVES

1) Estimate WSC density and relative abundance around two study locations off
Anacapa Island during spring and fall seasons.
2) Provide spatial data to CDFW to allow examination of the distribution and depth
range of WSC inside and outside of Anacapa Island SMR.
3) Provide an archive of high quality video transects capturing ecological conditions that
can be used to inform poorly understood aspects of WSC biology (i.e. growth, size
distribution, habitat associations and movement) that are important to future
management efforts.

The following report describes the data collection and post-processing methods used for this
study. Data summary statistics are presented to highlight preliminary survey results and
general trends. A complete dataset was provided to CDFW for further analysis.

SURVEY METHODS

Phase one surveys were performed in the spring, from May 10th – 12th, 2018 and the second
phase, in the fall, from November 18th – 20th, 2018. During each phase, two study sites were
surveyed, Anacapa Island SMR and East Fish Camp around Anacapa Island in the Channel
Islands (Figure 1). Survey sites and planned transect lines were provided to MARE by CDFW.
Transect lines were placed parallel to depth contours and evenly spaced across the target
range of 15 to 60 meters depth (Figure 1). Sites and transects were chosen to target rocky
habitat although the patchy nature of the Anacapa Island reefs ensured that sufficient soft
sediment and mixed habitats were surveyed.

March 2019- Assessment of Warty Sea Cucumber Abundance at Anacapa Island 3

Figure 1. Planned transect lines placed parallel to depth contours at Anacapa Island SMR
and East Fish Camp.

March 2019- Assessment of Warty Sea Cucumber Abundance at Anacapa Island 4ROV EQUIPMENT AND SAMPLING OPERATIONS
MARE’s ROV, the Beagle, was used
to collect data during the survey.
The ROV was operated off of NOAA’s
R/V Shearwater, a National Marine
Sanctuaries research vessel. The

ROV was flown along the pre-
planned transect lines between the

hours of 0800 and 1700. It was
flown off the vessel’s stern using a
“live boat” technique that employed
a 700 lb. depressor weight. Using
this method, the 50 meter tether
allowed the ROV pilot sufficient
maneuverability to maintain a
constant speed and a straight
course down the transect line. The ROV pilot and ship’s helm used real-time video displays
of the location of the ship and ROV to navigate.
For this survey, the Beagle was configured with a forward-facing high definition (HD) video
camera, downward-facing standard definition video camera, and forward facing HD still
camera that collected video and still imagery of WSCs and their surrounding habitats. Photos
were taken of WSCs by scientists when encountered and also automatically at approximately
30 second intervals to capture habitat and other species. The ROV’s on-screen display also
recorded time, depth, altitude, heading, temperature and range. In addition, positional
coordinates were recorded to track the position of the ROV relative to the ship in real time
and to provide the basis for determining length and area of transects for analysis.

POST-PROCESSING METHODS

All data collected by the ROV, along with subsequent observations extracted during post-
processing of the video, were linked in a Microsoft Access® database by time, which was

synced across all data streams at a one second interval. During video post-processing, a
customized computer keyboard was used to input the time of species observations and
habitat characteristics into a Microsoft Access® database.

SUBSTRATE AND HABITAT ANNOTATION

Video was reviewed for six different substrate types: rock, boulder, cobble, gravel, sand and
mud (Green et al. 1999). Each substrate was recorded as a discrete segment by entering the
beginning and ending time. Annotation was completed in a multi-viewing approach, in which
each substrate was recorded independently, capturing the often overlapping segments of
each substrate type (Figure 2). Percent by substrate represents the ratio of the transect lines
that have a given substrate compared to the total line, therefore overlapping substrates can
result in a sum greater than 100%.

March 2019- Assessment of Warty Sea Cucumber Abundance at Anacapa Island 5

Figure 2. Basic ROV strip transect methodology used to collect video data along the sea floor,
showing overlapping base substrate layers produced during video annotation and habitat
types (hard, mixed soft) derived from the overlapping substrates.

After the video review and annotation process, the substrate data were combined to create
three independent habitat categories: hard, soft, and mixed (Figure 2). Rock and boulder
were categorized as hard substrate types, while cobble, gravel, sand, and mud were
categorized as soft substrates. Hard habitat was defined as any combination of the hard
substrates, soft habitat as any combination of soft substrates, and mixed habitat as any
combination of hard and soft substrates. Habitat percentages sum to 100% and are derived
from substrate types as the proportion of the survey line that contained that specific habitat
type.

INVERTEBRATE ENUMERATION

Video was reviewed for observations of WSCs as well as the following invertebrates of
interest to CDFW scientists: other sea cucumber species, sea stars, sea urchins,
corals/gorgonians, spiny lobster, and keyhole limpets. During the review process, the
forward video camera files were reviewed, and the select macro-invertebrates were
recorded. Each invertebrate observation was entered into a Microsoft Access® database at
the one second time interval when it crossed the bottom of the viewing screen. This insured
that the positional coordinates of the observation were matched exactly with the estimated
position of the ROV.

ROV POSITIONAL DATA

Acoustic tracking systems generate numerous erroneous positional fixes due to acoustic
noise and other errors caused by vessel movement. For this reason, positional data were
post-processed to remove outliers and generate smoothed transects along each survey line
that best represent the true path of the ROV. Estimates of transect length derived from
survey lines processed using this technique have been found to have an accuracy of 1.7 ± 0.5
meters in total length when compared to known lengths between 0 and 100 meters (Karpov
et al. 2006).

ANALYSIS METHODOLOGIES

WARTY SEA CUCUMBER SUMMARIES

Data for WSCs was summarized by habitat type for each site and study season. The density
of WSCs per 100m2 in each habitat type (hard, mixed and soft) for the spring and fall at
Anacapa Island SMR and East Fish Camp were calculated using the following equation:
(Total number of WSCs per habitat type / Total m2 of each habitat type) * 100
Data for WSCs was also summarized by depth by breaking transects into 10 linear-meter
segments. Densities for each segment were calculated using the following equation:
(Total number of WSCs per 10 m segment / Total m2 of each 10 m segment)
Segments were then grouped into depth bins using the average depth per segment and
summarized for each study location and season.

RESULTS

SURVEY TOTALS

Survey effort was similar between sites and sampling periods (Table 1). A total of 15.7 hours
of video was reviewed, 8 hours for the spring survey, and 7.7 hours for the fall survey. Less
distance was surveyed during the spring (10.0 km) than in the fall (12.1 km), where effort
was added to fill in transects that were not surveyed at the East Fish Camp in spring due to
time restrictions (Figure 1). The range of depths surveyed during the spring and fall was
comparable at both sites (Table 1).

March 2019- Assessment of Warty Sea Cucumber Abundance at Anacapa Island 6

Table 1. Survey totals for Anacapa Island SMR and East Fish Camp, including hours of video,
total distance surveyed (kilometers), swept area of transects (hectares), and average,
minimum and maximum depth (meters) by season.

SUBSTRATE AND HABITAT

A summary of substrate and habitat composition for all survey sites and transects is given in
Table 2. Soft habitat was the dominant habitat observed overall, accounting for an average
of 59% of the habitat surveyed at Anacapa Island SMR, and 68% of the habitat observed at
East Fish Camp during both seasons (Table 2). Sand was the dominant substrate observed
within the soft category, accounting for an average of 83% at Anacapa Island SMR, and 86%
at East Fish Camp combined for both seasons. Hard and mixed habitats were less common
individually, however rocky substrate within those categories was relatively common
accounting for an average of 41% at Anacapa Island SMR and 31% at East Fish Camp for both
seasons combined (Table 2).

March 2019- Assessment of Warty Sea Cucumber Abundance at Anacapa Island 7

Table 2. Percentages of substrates and habitats by season at Anacapa Island SMR and East
Fish Camp.

INVERTEBRATE TOTALS

Total counts for all invertebrates observed at both Anacapa Island SMR and East Fish Camp
are given in Table for both survey sites and seasons combined. There were approximately
75% less WSCs enumerated during the fall than the spring survey (Table 4). Site specific
differences were not presented and data were not analyzed for non-WSC invertebrate
species observed in this study. These data were provided to CDFW scientists for further
analysis.

March 2019- Assessment of Warty Sea Cucumber Abundance at Anacapa Island 8

Table 3. Common and taxonomic (species) names of quantified invertebrates for the spring
and fall combined.

WARTY SEA CUCUMBERS

Overall, fewer WSCs were observed at East Fish Camp than at Anacapa Island SMR (Table 4).
And, while the largest proportion of habitat surveyed was soft habitat (Table 2), a greater
density of WSCs were found on hard and mixed habitat types (Figure 3). WSCs were also,
more abundant at both Anacapa Island SMR and East Fish Camp during the spring than the
fall (Table 4, Figure 3).

March 2019- Assessment of Warty Sea Cucumber Abundance at Anacapa Island 9

Table 4. The average, minimum, and maximum depth and the total number of warty sea
cucumbers observed at Anacapa Island SMR and East Fish Camp during the spring and fall.

March 2019- Assessment of Warty Sea Cucumber Abundance at Anacapa Island 10

Figure 3. Density of WSCs per 100m2 in each habitat type for the spring and fall at Anacapa
Island SMR and East Fish Camp. Densities represent the total number of WCSs observed
per 100m2 of each habitat type.

As expected, there was a lower mean density of WSCs at East Fish Camp (the fished site) in
all depth bins than at Anacapa Island SMR (the protected site) (Figure 4). Additionally,
there were higher mean densities of WSCs observed at both sites in the 15 to 20 meter
range than at any other depth (Figure 4).

March 2019- Assessment of Warty Sea Cucumber Abundance at Anacapa Island 11

Figure 4. The mean density of WSC (per m2) summarized from 10 meter transect segments
across all habitats by 5 meter depth bin for each season at Anacapa Island SMR and East
Fish Camp. Error bars represent one standard error.

DISCUSSION

The WSC dive fishery around Anacapa Island is not an exception to the pattern seen in other
sea cucumber fisheries, where market demand is increasing as the abundance of the
resource is decreasing (Chavez et al., 2011). The purpose of this study was to provide CDFW
with information to help inform management of the WSC dive fishery by further
understanding the performance of an MPA in relation to the fishery and by quantifying
seasonal WSC abundance to see if they undergo seasonal shifts from shallow to deep.
We looked at the role Anacapa Island SMR (a MPA) may play in providing refugee for this
species by documenting their densities within the SMR and in a nearby fished area. The
results clearly indicated a differential in WSC densities inside and outside the protection of
the MPA, with WSCs being more abundant (~75%) at the MPA site, than the fished site at all
depths and during both survey seasons. These results were consistent with previous results
reported by CDFW SCUBA surveys.
We also quantified WSCs to see if there was evidence of a seasonal shift in abundance
between shallow-water habitats (<30 m) and deep-water habitats (> 30 m). It was found that
anecdotal reports of WSCs exhibiting a seasonal depth migration were not supported by this
study. Although differences in abundance were observed between seasons, with densities
considerably lower in the fall than in the spring, there was no shift in the distribution of
abundance by depth.
In addition, there was no difference in WSC abundance by habitat type between seasons.
Density by habitat type remained proportional between seasons, with no shift from one
habitat type to another. Further study is required to explain the change in WSC abundance
in winter months, when densities in shallower waters decrease drastically.

PROJECT DELIVERABLES

MARE will provide CDFW lead scientist copies of the primary video (forward and downward
facing) and HD still photos for the entire survey on a portable hard drive. Each video and
photo file folder has an accompanying storyboard detailing the ROV name, date, dive
number, location, and transect number. All video recordings contain a timecode audio track
that can be used to automatically extract GPS time from the video.

A copy of the master Microsoft Access database, which contains all the raw and post-
processed data will also be provided to the CDFW lead scientist. These data will include ROV

position (raw and cleaned), ROV sensor readings (depth, temperature, salinity, dissolved
oxygen, forward and downward range, heading, pitch and roll), calculated transect width
and area, substrate and habitat, and invertebrate identifications. Included in the processed
position table are the computed transect identifications for invertebrate transects (see
methods).

REFERENCES

California Department of Fish and Game. 2007. Status of the Fisheries Report, 5. Sea
Cucumbers.

Chavez, E.A., Salgado-Rogel, A.L., Palleiro-Nayar, J. 2011. Stock Assessment of the Wary Sea
Cucumber Fishery (Parastichopus Parvimensis) of NW Baja California. CalCOFI Rep., Vol. 52.

Greene, H.G., M.M. Yoklavich, R.M. Starr, V.M. O’Connell, W.W. Wakefield, D.E. Sullivan, J.E.
McRea Jr., and G.M. Cailliet. 1999. A classification scheme for deep seafloor habitats:
Oceanologica Acta 22(6):663–678.

Gotshall, D.W. 2005. Guide to marine invertebrates – Alaska to Baja California, second
edition (revised). Sea Challengers, Monterey, California, USA.

Karpov, K., A. Lauermann, M. Bergen, and M. Prall. 2006. Accuracy and Precision of
Measurements of Transect Length and Width Made with a Remotely Operated Vehicle.
Marine Technical Science Journal 40(3):79–85.

Schroeter SC., Reed DS., Kushner DJ, Estes JA., Ono DS. 2001. The use of marine reserves in
evaluating the dive fishery for the warty sea cucumber (Apostichopus parvminesis) in
California, U.S.A. Canadian Journal of Fisheries and Aquatic Sciences. 58: 1173-1781.

State of California Fish and Game Commission. July 11, 2017. Initial Statement of Reasons
for Regulatory Action, Title 14 California Code of Regulations, Re: Commercial Taking of
Sea Cucumber.

Veisze, P. and K. Karpov. 2002. Geopositioning a Remotely Operated Vehicle for Marine
Species and Habitat Analysis. Pages 105–115 in Undersea with GIS. Dawn J.
Wright, Editor. ESRI Press.

2021-07-20T20:59:41-08:00March 1st, 2019|research|

June 2017 – Oceana Deep sea Coral and Sponge 2017 Final Report


Warning: Undefined array key "file" in /home3/maregrou/public_html/wp-includes/media.php on line 1749

Warning: Undefined array key "file" in /home3/maregrou/public_html/wp-includes/media.php on line 1749

Oceana Deepsea Coral and Sponge 2017 Final Report

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 12

June 5, 2017

Andrew R. Lauermann, Heidi M. Lovig, Yuko Yokozawa, Johnathan Centoni, Greta Goshorn

 

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 13

Marine Applied Research and Exploration
320 2nd Street, Suite 1C, Eureka, CA 95501 (707) 269-0800
www.maregroup.org

TABLE OF CONTENTS

 

INTRODUCTION 4

METHODS 5

DATA COLLECTION 5

ROV Equipment 5

ROV Sampling Operations 6

POST-PROCESSING 6

Substrate and Habitat 7

Finfish and Invertebrate Enumeration 7

RESULTS 9

SURVEY TOTALS 9

SUBSTRTATE AND HABITAT 11

Substrate 11

Habitat 11

FISH AND INVERTEBRATE TOTAL COUNTS 11

Fish 11

Invertebrates 11

FISH AND INVERTEBRATE DENSITY 16

Fish 16

Invertebrates 16

MAPS OF TRANSECTS 20

Southeast Santa Rosa Island 21

Footprint Deep Ridge 22

West Santa Barbara Island 23

West Santa Barbara Island 24

West Santa Barbara Island 25

South Santa Barbara Island 26

West Butterfly Bank 27

UNIDENTIFIED SPECIES LIST 28

Anemones 28

Boot Sponges 28

UI Lobed Sponge 29

Other Sponges Observed 30

UI Bubblegum Coral 31

REFERENCES 32

INTRODUCTION

From August 7th through 11th of 2016, four study locations were surveyed using a remotely operated vehicle (ROV) within the Sothern California Bight. The goal of this Oceana lead expedition was to collect high definition video and still imagery within unique deep-water sponge and coral habitats. Study areas and dive locations were based on bathymetry mapping data and/or data from NOAA’s Deep Sea Coral National Observation Database. The data collection protocols used for this project were similar  to those used inside the Channel Islands National Marine Sanctuary, Monterey Bay National Marine Sanctuary, Farallon Islands National Marine Sanctuary, Cordell Bank National Marine Sanctuary and at over 175 sites in and adjacent to California’s marine protected areas network.

During the 5-day expedition, deep-water ROV surveys were conducted near Santa Rosa Island, Footprint MPA, Santa Barbara Island and Butterfly Bank. During each  dive, ROV survey lines were broken into 15-minute transects at the discretion of Oceana scientists onboard. Each 15-minute transect and the corresponding positional data were subsequently post-processed in the lab by Marine Applied Research and Exploration (MARE) using standardized methods that were developed in partnership by the California Department of Fish and Wildlife and MARE. These methods have been used since 2003 to process over 2,000 km of ROV video.

The following report describes the data collection and post-processing methods used for the survey. Data summaries are provided which highlight post-processing results and a complete database of all data collected will be provided to Oceana.

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 14

METHODS

DATA COLLECTIONJune 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 15

ROV Equipment

An observation class ROV, the Beagle, was used to complete benthic surveys of select Southern California Bight study locations. The ROV was equipped with a three-axis autopilot including a rate gyro- damped compass and altimeter.  Together, these allowed the pilot to maintain a constant heading (± 1 degree) and constant altitude (± 0.3 m) with minimal corrections. In addition, a forward speed control was used to help the pilot maintain a consistent forward velocity between 0.25 and 0.5 m/sec while on transect. A Tritech® 500 kHz ranging sonar, which measure distance across a

range of 0.1–10 m using a 6° conical transducer, was used as the primary method for measuring transect width from the forward facing HD video. The transducer  was pointed at the center of the camera’s viewing area and was used to calculate the distance to middle of screen, which was subsequently converted to width using the known properties of the cameras field of view. Readings from the sonar were averaged five times per second and recorded at a one-second interval with all other sensor data. Measurements of transect width using a ranging sonar are accurate to ± 0.1 m (Karpov et al. 2006). ROV Beagle was also equipped with parallel lasers set with a 10 cm  spread and positioned to be visible in the field of view of the primary forward camera. These lasers provided a scalable reference of size when reviewing video.

An ORE Offshore Trackpoint III® ultra-short baseline acoustic positioning system with ORE Offshore Motion Reference Unit (MRU) pitch and roll sensor was used to reference the ROV position relative to the ship’s Wide Area Augmentation System Global Positioning System (WAAS GPS). The ship’s heading was determined using a KVH magnetic compass. The Trackpoint III® positioning system calculated the XY position of the ROV relative to the ship at approximately two-second intervals. The ship-relative position was corrected to real world position and recorded in meters as X and Y using the World Geodetic System (WGS)1984 Universal Transverse Mercator (UTM) coordinate system using HYPACK® 2013 hydrographic survey and navigation software. Measurements of ROV heading, depth, altitude, water temperature, camera tilt and ranging sonar distance were averaged over a one-second period and recorded along with the position data.

The ROV was equipped with four cameras, including one forward facing high definition (HD) camera, two standard definition cameras and one HD still camera. The primary

data collection camera (HD video camera) and HD still camera were oriented obliquely forward. All video and still images were linked using UTC timecode recorded as a video overlay or using the camera’s built-in time stamp which was set to UTC time each day.

 

All data collected by the ROV, along with subsequent observations extracted during post-processing of the video, was linked in a Microsoft Access® database using GPS time. GPS time was used to provide a basis for relating position, field data and video observations (Veisze and Karpov 2002). Data management software was used to expand all data records to one second of Greenwich Mean Time (GMT) time code. During video post-processing, a Horita® Time Code Wedge (model number TCW50) was used in conjunction with a customized computer keyboard to record the audio time code in a Microsoft Access® database.

 

ROV Sampling OperationsJune 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 16

R/V Shearwater, a 22 m NOAA research vessel, was used to complete the 2016 survey. At each site, the ROV was piloted along 15-minute transect lines (determined during dive) and was flown off the vessel’s stern using a “live boat” technique that employed a 317.5 kg (700 lb) clump weight. Using this method, all but 50 m of the ROV umbilical was isolated from current-induced drag by coupling it with the clump weight cable and suspending the clump weight at least 10 m off the seafloor. The 45 m tether allowed the ROV pilot sufficient

maneuverability to maintain a constant speed (0.5 to 0.75 m/sec) and a straight course down the planned survey line, while on transect.

 

The ship remained within 35 m of the ROV position at all times. To achieve this, an acoustic tracking system was used to calculate the position of the ROV relative to the ship. ROV position was calculated every two seconds and recorded along with UTC timecode using navigational software. Additionally, the ROV pilot and ship captain utilized real-time video displays of the location of the ship and the ROV, in relation to the planned transect line. A consistent transect width, from the forward camera’s field of view, was achieved using sonar readings to sustain a consistent distance from the camera to the substrate (at the screen horizontal mid-point) between 1.5 and 3 m. In areas with low visibility, BlueView multibeam sonar was used to navigate hazardous terrain.

 

POST-PROCESSING

Following data collection, the ROV position data was processed to remove outliers and data anomalies caused by acoustic noise and vessel movement, which are inherent in these systems (Karpov et al. 2006). In addition, deviations from sampling protocols

such as pulls (ROV pulled by the ship), stops (ROV stops to let the ship catch up), or loss of target altitude caused by traveling over backsides of high relief structures, were identified in the data and not used in calculations of density for fish and invertebrate species.

 

Substrate and Habitat

For each study area, all video collected was reviewed for up to six different substrate types: rock, boulder, cobble, gravel, sand and mud (Green et al. 1999). Each substrate was recorded as discrete segments by entering the beginning and ending UTC timecode. Substrate annotation was completed in a multi-viewing approach, in which each substrate type was recorded independently, enabling us to capture the often overlapping segments of substrates (Figure 1). These overlapping substrate segments allowed identification of mixed substrate areas along the transect line.

 

After the video review process, the substrate data was combined to create three independent habitat types: hard, soft, and mixed habitats (Figure 1). Rock and boulder were categorized as hard substrate types, while cobble, gravel, sand, and mud were all considered to be unconsolidated substrates and categorized as soft. Hard habitat was defined as any combination of the hard substrates, soft habitat as any combination of soft substrates, and mixed habitat as any combination of hard and soft substrates.

 

Finfish and Invertebrate EnumerationJune 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 17

After completion of habitat and substrate review, video was processed to collect data for use in estimating finfish and macro-invertebrate distribution, relative abundance and density. During the review process, both  the forward and down video files were simultaneously reviewed, yielding a continuous and slightly overlapping view of what was present in front of and below the ROV. This approach effectively increased the resolution of the visual survey, by identifying animals that were difficult to recognize in the forward camera, but were clearly visible and identifiable in the down camera.

 

During multiple subsequent viewings, finfish and macro-invertebrates were classified to the lowest taxonomic level possible. Observations that could not be classified  to species level were identified to a taxonomic complex, or recorded as unidentified (UI). During video review, both the HD video and HD still imagery were used to aid in species identification. Each fish or invertebrate observation was entered into a Microsoft Access® database along with UTC timecode, taxonomic name/grouping, sex/developmental stage (when applicable), and count. Fish, were sized using the two sets of parallel lasers to estimate total length. Not all fish were sizeable due to their position within the field of view of the ROV.

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 18

Figure 1. (a) Basic ROV strip transect methodology used to collect video data along the sea floor, (b) overlapping base substrate layers produced during video processing and (c) habitat types (hard, mixed soft) derived from the overlapping base substrate layers after video processing is completed.

All clearly visible finfish and macro-invertebrates were enumerated from the video record. Invertebrate species that typically form large colonial mats or cover large areas and could not be counted individually were instead recorded as invertebrate layers (with discrete start and stop points and percent cover estimates for each segment). Invertebrate patch segments were coded for percent cover using four groupings: 1) less than 25% cover, 2) 25% to 50% cover, 3) 50% to 75% cover and 4) greater than 75% cover. Only data on individual invertebrate observations are presented in this report. Invertebrate patch data are provided as part of the final data submission for use in future analysis.

RESULTS

Due to technical difficulties with the ROV’s USBL tracking system, several ROV dives surveyed during the 2016 expedition do not have positional data. These dives include, dive #8 at East Butterfly Bank and dive #11 at South Santa Rosa Island. Because there was no base data to correlate video observations, dive #8 at East Butterfly Bank was not video post-processed. However, video collect on dive #11 at South Santa Rosa Island had already been processed when it was discovered that the positional files were corrupted. Therefore, fish and invertebrate observational data at South Santa Rosa Island will be included in the data package, but those observations are not presented in the results section of this report.

In addition, dive #6 at West Butterfly Bank was aborted before completing the transect; and no transects were defined during dive #10 at Footprint Ridge.

SURVEY TOTALS

Total number of fish and macro-invertebrates observed and sampling effort and are given in Table 1. Over 18,000 fish and macro-invertebrates were observed at depths ranging from 126 m to 379 m, and a total of 10.8 kilometers of seafloor was surveyed during the completion of 23 transects at all five study areas combined (Figure 2).

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 19

Table 1. Total sampling effort at five Southern California study areas, showing total distance, area, fish and macro-invertebrate counts and depth range.

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 20

Figure 2. ROV dive locations for the five study areas video post-processed.

SUBSTARTATE AND HABITAT

Substrate

Substrate types observed on transects are not mutually exclusive and represent the proportion of the total surveyed transect distance that has a given substrate present (see methods for full description). Overall, mud, cobble and rock substrates were the most common (Table 2). Sand was only observed at Southeast Santa Rosa Island (the shallowest area surveyed).

Habitat

Habitat types derived from substrate data show that across all sites, soft and mixed habitats were the most common, combined accounting for between 81% – 100% of the habitat observed across all sites (Table 2). Hard habitats were the least common accounting for only 0% to 19 % of the available habitat across all sites.

Table 2. Percent substate and habitat types encountered at the five study areas.

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 21

FISH AND INVERTEBRATE TOTAL COUNTS
Fish
Rockfish were the most commonly observed fish accounting for 92.7% of the total fish count at all study areas combined (Table 3). Halfbanded rockfish were the most abundant rockfish species, accounting for nearly 40% of all of the fish observations. The next most abundant species were the following rockfish: YOY, Swordspine rockfish, Sebastomus rockfish, UI rockfish and Pygmy rockfish which combined accounted for another 44% of all fish observations. Cowcod, a currently listed overfished species, was observed, representing 0.3% of the total count. The most abundant non-rockfish grouping was the combfish complex, accounting for 2.4% of the fish observations.

Invertebrates
Four species/groupings of macro-invertebrates accounted for approximately 65% of the total invertebrate counts (Table 4). The most abundant species observed was the fragile pink urchin, which accounted for approximately 26% of the overall count; followed by the squat lobster, UI lobed sponge and white slipper sea cucumber which accounted for the remaining 39%.

Over 3,400 structure forming sponges from 11 species/groupings were observed, accounting for 26% of the total invertebrate observations. Corals were commonly observed and represented 9% of the observations (11 species/groupings). Gorgonians were the most commonly observed coral type, with 3 species/groupings representing the majority of the observations: gray, red swiftia and yellow gorgonians. Fifteen species/groupings of sea stars were also observed, but represented less than 5% of the total macro-invertebrate observations.

Table 3. Overall fish counts are presented in order from highest to lowest abundance.

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 22

Table 4. Overall macro-invertebrate counts are presented in order from highest to lowest abundance.

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 23

Table 4. Continued.

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 24

FISH AND INVERTEBRATE DENSITY

 

FishJune 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 25

At Southeast Santa Rosa Island, fish densities were higher than any other study area, with 53 fish/100 m2 (Table 5). Halfbanded rockfish represented the majority of the density, accounting for over 45 fish/100 m2. When Halfbanded rockfish are not included in the overall densities of each study area, West Santa Barbara Island has the highest overall density at almost 12 fish/100 m2. At West Butterfly Bank, the lowest overall fish density was observed with just over 2 fish per 100 m2.

 Halfbanded rockfish

After Halfbanded rockfish, the next most abundant species/groupings were YOY and swordspine rockfish at West Santa Barbara Island. Sebastomus rockfish, unidentified rockfish and small benthic fish were also common across all sites. Bank rockfish were observed at all sites except at Southeast Santa Rosa Island. Cowcod were only observed at South Santa Barbara Island.

The number of species observed at each study location varied greatly. June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 26Of the 46 species/groupings observed, 30 were observed at West Santa Barbara Island, the highest of all study areas. In contrast, the lowest number of fish species observed was at West Butterfly Bank, with only 11 species/groupings observed.

 

Invertebrates

Cowcod

 

The Footprint Deep Ridge study area had the highest overall macro-invertebrate density, with over 196 invertebrates/100 m2 (Table 6). At Footprint Deep Ridge, fragile pink urchin densities were the highest observed, with densities over 7 times higher than the next most abundant species/grouping, which was the squat lobster at West Butterfly Bank. West Santa Barbara Island had the most species/groupings of any study area surveyed with a total of 52 species/groupings (Table 6).

In contrast, Southeast Santa Rosa Island had the lowest number of invertebrate species/groupings observed and lowest total invertebrate density. At Southeast Santa Rosa Island, a total of 20 invertebrate species/groupings produced a total density of just over 8 invertebrates/100 m2. All other sites overall densities exceeded 33 invertebrates/100 m2.

Coral and sponge species were observed at all study areas, with some notable differences at each location. The gray gorgonian was only observed at West Santa

 

Barbara Island and Footprint Deep Ridge. Densities of the gray corals were almost 16 times June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 27higher at West Santa Barbara Island than at Footprint Deep Ridge. Black corals were found at both the Footprint Deep Ridge and Santa Barbara Island sites, though black corals were over four times denser at Footprint Deep Ridge.

 

Other corals observed included: an unidentified small orange gorgonian (UI orange gorgonian) at Footprint Deep Ridge and West Butterfly Bank, a yellow gorgonian observed at all locations except Footprint Deep Ridge, and the red swiftia gorgonian found at all study areas.

Gray gorgonian

 

 

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 28Structure forming sponges were observed at all study areas, with the highest density observed at West Butterfly Bank. At this site, three sponge types: the hairy boot sponge, UI laced sponge and UI lobed sponge accounted for over 38 sponges per 100m2. Trumpet sponges were unique to only West Butterfly Bank, while the UI large yellow sponge was only observed at West Santa Barbara Island.

UI hairy boot sponge

Sponge identification was based on morphology, which createdJune 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 29
a particular issue for one morphotype: the UI lobed sponge. UI lobed sponges were observed at all study areas, but the type of lobed sponge varied (see unidentified species list). Lobed sponges at West Butterfly Bank were almost entirely ‘Type 3’ lobed sponge, while at both Santa Barbara Island study areasthe lobed sponges were predominantly ‘Type 1’. At Southeast Santa Rosa Island, lobed sponges were entirely ‘Type 1’, while Footprint Deep Ridge was 50% ‘Type 1’ and 50% ‘Type 2’.

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 30

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 31

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 32

MAPS OF TRANSECTS

 

Maps of ROV transects for all four study areas surveyed are shown in Figures 3 – 9. Each set of maps shows select invertebrates that were of species interest during the survey, and substrate types encountered along each transect.

 

Select invertebrates include: black corals, gorgonians (UI orange, red, yellow, gray, red swiftia and unidentified gorgonians), other corals (bubblegum and mushroom corals), basket stars and sponges (laced, large yellow, boot, hairy boot, branched, lobed, vase and trumpet sponges).

Southeast Santa Rosa Island

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 33

Figure 3. ROV transects at Southeast Santa Rosa Island showing select invertebrates (top) and substrates encountered (bottom). Invertebrate grouping include: black corals, gorgonians (UI orange,  red, yellow, gray, red swiftia and unidentified gorgonians), other corals (bubblegum and mushroom corals), basket stars and sponges (laced, large yellow, boot, hairy boot, branched, lobed, vase and trumpet sponges).

Footprint Deep Ridge

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 34

Figure 4. ROV transects at Footprint Deep Ridge Island showing select invertebrates (top) and substrates encountered (bottom). Invertebrate grouping include: black corals, gorgonians (UI orange,  red, yellow, gray, red swiftia and unidentified gorgonians), other corals (bubblegum and mushroom corals), basket stars and sponges (laced, large yellow, boot, hairy boot, branched, lobed, vase and trumpet sponges).

West Santa Barbara Island

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 35

Figure 5. ROV transects at West Santa Barbara Island showing select invertebrates (top) and substrates encountered (bottom). Invertebrate grouping include: black corals, gorgonians (UI orange, red, yellow, gray, red swiftia and unidentified gorgonians), other corals (bubblegum and mushroom corals), basket stars and sponges (laced, large yellow, boot, hairy boot, branched, lobed, vase and trumpet sponges).

 

West Santa Barbara Island

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 36

Figure 6. ROV transects at West Santa Barbara Island showing select invertebrates (top) and substrates encountered (bottom). Invertebrate grouping include: black corals, gorgonians (UI orange, red, yellow, gray, red swiftia and unidentified gorgonians), other corals (bubblegum and mushroom corals), basket stars and sponges (laced, large yellow, boot, hairy boot, branched, lobed, vase and trumpet sponges).

 

West Santa Barbara Island

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 37

Figure 7. ROV transects at West Santa Barbara Island showing select invertebrates (top) and substrates encountered (bottom). Invertebrate grouping include: black corals, gorgonians (UI orange, red, yellow, gray, red swiftia and unidentified gorgonians), other corals (bubblegum and mushroom corals), basket stars and sponges (laced, large yellow, boot, hairy boot, branched, lobed, vase and trumpet sponges).

 

South Santa Barbara Island

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 38

Figure 8. ROV transects at South Santa Barbara Island showing select invertebrates (top) and  substrates encountered (bottom). Invertebrate grouping include: black corals, gorgonians (UI orange,  red, yellow, gray, red swiftia and unidentified gorgonians), other corals (bubblegum and mushroom corals), basket stars and sponges (laced, large yellow, boot, hairy boot, branched, lobed, vase and trumpet sponges).

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 39

Figure 9. ROV transects at West Butterfly Bank showing select invertebrates (top) and substrates encountered (bottom). Invertebrate grouping include: black corals, gorgonians (UI orange, red, yellow, gray, red swiftia and unidentified gorgonians), other corals (bubblegum and mushroom corals), basket stars and sponges (laced, large yellow, boot, hairy boot, branched, lobed, vase and trumpet sponges).

UNIDENTIFIED SPECIES LIST

Anemones

The three Unidentified anemone species were observed:

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 40

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 41

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 42

UI anemone 1                                    UI anemone 2                             UI anemone 4

Boot Sponges

Two boot sponges were observed, one ‘hairy’ type and the more typically seen boot sponge:

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 43 June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 44

         UI hairy boot sponge                                                   UI boot sponge

 

UI Lobed Sponge

Three UI lobed sponges were observed. The visually estimated percent of UI lobed sponges for each type by location are given in Table 7.

Type 1: Forms a thicker, softer, more variable mat. It is variable color, and may have darker margins.

Type 2: Forms thin, rigid, sheet-like structures, and is off-white in color.

Type 3: Ossicles are large and clearly visible, and is bright white in color.

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 45

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 46

Other Sponges Observed

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 47

UI Bubblegum Coral

Of the 24 UI bubblegum coral observed, only one large, highly branched individual was enumerated across all sites (upper right photo). All other bubblegum coral observed resembled the other three photos shown here.

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 48

REFERENCES

Greene, H.G., M.M. Yoklavich, R.M. Starr, V.M. O’Connell, W.W. Wakefield, D.E. Sullivan, J.E. McRea Jr., and G.M. Cailliet. 1999. A classification scheme for deep seafloor habitats: Oceanologica Acta 22(6):663–678.

Karpov, K., A. Lauermann, M. Bergen, and M. Prall. 2006. Accuracy and Precision of Measurements of Transect Length and Width Made with a Remotely Operated Vehicle. Marine Technical Science Journal 40(3):79–85.

Veisze, P. and K. Karpov. 2002. Geopositioning a Remotely Operated Vehicle for Marine Species and Habitat Analysis. Pages 105–115 in Undersea with GIS. Dawn J. Wright, Editor. ESRI Press.

 

 

DOWNLOAD PDF

June 2017 - Oceana Deep sea Coral and Sponge 2017 Final Report 49
2021-03-10T21:21:07-08:00June 1st, 2017|research|
Go to Top